Rainbow Pinwheel - Link Select

Senin, 23 Juli 2018

10 Hal Aneh yang Ada di Luar Angkasa


 10 HAL ANEH YANG ADA DI LUAR ANGKASA

  10. Arus Listrik

Beberapa tahun lalu, para ilmuwan dikejutkan dengan penemuan hal aneh berupa arus listrik di luar angkasa. Arus listrik tersebut berkisar 10^18 amps atau setara dengan 1 triliun petir. Dengan arus listrik sebesar itu, ada banyak hal yang bisa kalian lakukan, contohnya mengecas baterai handphone sampai penuh.

Para ilmuwan berasumsi bahwa arus listrik tersebut berasal dari lubang hitam yang sangat besar yang berada di tengah galaksi. Medan listrik dari lubang hitamg tersebut mampi menciptakan arus listrik yang sangat besar, dengan bermodalkan gas dan debu hingga jarak melebihi 150.000 tahun cahaya.

9. Black Widow Pulsar

Sebelum membahas lebih jauh apa itu Black Widor Pulsar, mari kita bahas lebih dahulu mengenai pulsar. Pulsar adalah bintang neutro yang memiliki rotasi sangat cepat. Pulsar ini merupakan sisa-sisa yang tertinggal dari bintang yang telah mati. Nah, salah satu pulsar, Pulsar J1311-3430 atau Black Widow Pulsar adalah pulsar yang sangat berbahaya.

Kenapa ia berbahaya? Pulsar ini terus bertambah besar dengan cara memakan partnernya sendiri yang merupakan bintang normal. Tak hanya bertambah besar, Black Widow Pulsar juga semakin bertambah energinya setiap mengkanibal bintang baru. Pulsar J1311-3430 memiliki berat 2 kali dari Matahari, dengan lebar sebesar Washington, DC.

8. White Hole

Bila ada yang namanya black hole/lubang hitam, para peneliti memperkirakan bahwa ada juga yang namanya white hole/lubang putih. Sama seperti Yin dan Yang, lubang hitam dan lubang putih adalah 2 hal yang saling kontradiksi. Jika lubang hitam akan menghisap apapun ke dalam, maka lubang putih akan memuntahkan sesuatu dari dalam, ke luar angkasa.

Para peneliti hingga saat ini hanya baru berspekulasi tentang keberadaan lubang putih. Tak ada tanda sedikit pun tentang keberadaan lubang putih. Ketiadaan tanda-tanda akan lubang putih dikarenakan juga tak ada benda yang dimuntahkan oleh lubang putih. Para peneliti masih berusaha mendeteksi ledakan radiasi yang tak biasa yang nantinya akan dikembangkan hipotesis mengenai lubang putih.

7. Black Hole

Sudah dijelaskan bahwa lubang hitam adalah kebalikan dari lubang putih. Jika lubang putih akan memuntahkan sesuatu ke luar, maka lubang hitam justru akan menghisap apapun ke dalamnya. Albert Einstein adalah ilmuwan yang berhasil menemukan keberadaan lubang hitam ini dengan menggunakan ilmu matematika yang ia miliki.

Tidak ada yang bisa membuktikan apa yang ada di dalam lubang hitam. Mereka hanya bisa memastikan bahwa apapun yang tersedot ke dalam lubang hitam, tidak akan bisa keluar. Teori gila yang beredar, lubang hitam bisa menghubungkan dengan misteri lain yang berusaha dipecahkan oleh ilmuwan yakni perjalanan menembus ruang dan waktu atau time travel.

6. Cosmic Microwave Background

Terbentuknya suatu semesta adalah karena ledakan big bang. Tapi, benarkah hanya itu? Hanya itukah yang muncul dari ledakan big bang? Ternyata tidak. Selain sebagai awal muncul terciptanya semesta, ledakan big bang memunculkan hal lain yang dinamakan Cosmic Microwave Background, disingkat menjadi CMB.

CMB adalah radasi yang tercipta setelah terjadinya big bang yang menjadi awal mula terciptanya alam semesta. CMB pertama kali terdeteksi di tahun 1960an, saat itu, CMB terdengar seperti suara gelombang radio yang muncul dimana-mana di luar angkasa. Penemuan ini dianggap sebagai penemuan aneh sekaligus besar selain big bang.

5. Antimatter

Ada yang namanya matter atau materi, ada juga yang namanya antimatter atau anti materi. Perbedaan antimatter-matter, kurang lebih sama seperti Superman-Bizzaro. Keduanya memiliki sifat yang berkebalikan. Jika matter memiliki massa atau berat, antimatter tidak memiliki massa atau berat sama sekali.

Para peneliti yang menemukan antimatter, berusaha mencari tahu lebih dalam tentang keberadaan antimatter. Misalnya, dari mana antimatter ini terbentuk? Menurut perkiraan, antimatter bisa terbentuk dari ledakan big bang. Ledakan big bang sendiri, seperti yang kita tahu adalah awal terbentuknya dari alam semesta.

4. Large Quasar Group

Large Quasar Group atau LQG adalah koleksi quasar yang terbentuk dari lubang hitam raksasa. Quasar ini sangat terang, sangat energetik, dan sangat kuat. Jika dilihat dari teleskop, quasar tampak seperti titik yang mirip dengan bintang. LQG ini memiliki jarak yang sangat jauh, sekitar 4 miliar tahun cahaya dari Bumi.

LQG membuat ilmuwan heran karena ukurannya yang sangat besar, dimana ukuran maksimum struktur kosmik harusnya hanya 1,2 miliar tahun cahaya. Bagaimana LQG ini bisa terbentuk? Padahal ilmuwan cukup sadar dengan segala hal yang berjarak 100 juta tahun cahaya dari planet Bumi.

3. Planet Gliese 581 c

Banyak ramalan yang mengatakan bahwa Bumi akan kiamat pada tanggal ini, ini, dan ini. Meski sampai saat ini belum ada ramalan tersebut yang terjadi, banyak ilmuwan yang mulai mencari keberadaan planet lain yang sekiranya bisa dijadikan planet tempat tinggal baru. Dan, akhirnya ditemukanlah Planet Gliese 581 c.

Para ilmuwan beranggapan, Gliese 581 c ini bisa menjadi tempat tinggal baru bagi manusia. Terlepas dari kenyataan bahwa planet ini bisa membunuh manusia. Termausk dalam orbit Red Dwarf Star, Gliese 581 c memiliki ukuran yang jauh lebih kecil daripada Matahari, dengan tingkat keterangan cahaya 1,3% dari Matahari. Singkat kata, Gliese 581 lebih cocok dianggap sebagai bintang daripada planet. Pasang surut adalah hal yang wajar di Gliese 581 c. Satu sisi planet selalu menghadap bintang, satu lagi tidak, kurang lebih sama seperti Bumi dan Bulan. Tinggal di bagian yang menghadap bintang bisa melelehkan wajah, tinggal di bagian lainnya bisa membuat kalian membeku.

2. Penampakan UFO Yang Dipotong NASA

Luar angkasa sangatlah luas. Luasnya tersebut menjadi sellimut tebal dari segala misteri yang ada di baliknya. Salah satu misteri yang sampai saat ini dipertanyakan orang-orang adalah, apakah di luar sana ada kehidupan layaknya di Bumi? Atau singkatnya, apakah ada alien di luar sana? Kalian mungkin juga memiliki pertanyaan yang sama akan keberadaan alien.

Jawaban tentang keberadaan alien tersebut mungkin ada pada tayangan video live yang terjadi pada 15 Januari 2015. Saat itu, NASA sedang melakukaan live video tentang International Space Station yang ada di luar angkasa. Tanpa disengaja, ada sosok UFO yang lewat dan muncul di live video tersebut. Menyadari itu, NASA langsung memotong live video. Benarkan objek yang muncul dalam video tersebut adalah UFO? Kenapa NASA ingin menyembunyikannya?

1. Bakteri Hidup

Luar angkasa memiliki kondisi yang sangat ekstrim dimana ruang hampa udara membuat manusia, atau lebih tepatnya makhluk hidup tidak bisa bertahan lama berada di dalamnya. Ya, terkecuali Tardigrade, mikro organisme yang diketahui memiliki kemampuan untuk bertahan hidup di situasi yang ekstrim. Selain Tardigrade, tak ada makhluk hidup lain yang bisa bertahan hidup di luar angkasa.

Namun, belum lama, para astronot berhasil menemukan makhluk hidup berupa bakteri yang berhasil hidup di luar angkasa, di luar International Space Station. Oleh mereka, bakteri tersebut diambil menggunakan kain pel untuk diteliti. Inikah bukti akan adanya alien? Para astronot yang tidak percaya begitu saja akan alien, mencoba mencari alasan yang paling masuk akal akan keberadaan bakteri hidup di luar angkasa. Mereka beralasan, bakteri tersebut awalnya berasal dari Bumi. Tekanan udara mendorong bakteri tersebut ke atmosfir Bumi dan terbawa hingga ke luar angkasa.


Satelit


 SATELIT

Satelit adalah benda yang mengorbit benda lain dengan periode revolusi dan rotasi tertentu. Ada dua jenis satelit yakni satelit alami dan satelit buatan. Sisa artikel ini akan berkisar tentang satelit buatan.

Sejarah 

Satelit buatan manusia pertama adalah Sputnik 1, diluncurkan oleh Soviet pada tanggal 4 Oktober 1957, dan memulai Program Sputnik Rusia, dengan Sergei Korolev sebagai kepala disain dan Kerim Kerimov sebagai asistennya. Peluncuran ini memicu lomba ruang angkasa (space race) antara Soviet dan Amerika.

Sputnik 1 membantu mengidentifikasi kepadatan lapisan atas atmosfer dengan jalan mengukur perubahan orbitnya dan memberikan data dari distribusi signal radio pada lapisan ionosphere. Karena badan satelit ini diisi dengan nitrogen bertekanan tinggi, Sputnik 1 juga memberi kesempatan pertama dalam pendeteksian meteorit, karena hilangnya tekanan dalam disebabkan oleh penetrasi meteroid bisa dilihat melalui data suhu yang dikirimkannya ke bumi.

Sputnik 2 diluncurkan pada tanggal 3 November 1957 dan membawa awak makhluk hidup pertama ke dalam orbit, seekor anjing bernama Laika.

Pada bulan Mei, 1946, Project Rand mengeluarkan desain preliminari untuk experimen wahana angkasa untuk mengedari dunia, yang menyatakan bahwa, "sebuah kendaraan satelit yang berisi instrumentasi yang tepat bisa diharapkan menjadi alat ilmu yang canggih untuk abad ke duapuluh". Amerika sudah memikirkan untuk meluncurkan satelit pengorbit sejak 1946 di bawah Kantor Aeronotis angkatan Laut Amerika (Bureau of Aeronautics of the United States Navy). Project RAND milik Angkatan Udara Amerika akhirnya mengeluarkan laporan di atas, tetapi tidak mengutarakan bahwa satelit memiliki potensi sebagai senjata militer; tetapi, mereka menganggapnya sebagai alat ilmu, politik, dan propaganda. Pada tahun 1954, Sekertari Pertahanan Amerika menyatakan, "Saya tidak mengetahui adanya satupun program satelit Amerika."

Pada tanggal 29 Juli 1955, Gedung Putih mencanangkan bahwa Amerika Serikat akan mau meluncurkan satelit pada musim semi 1958. Hal ini kemudian diketahui sebagai Project Vanguard. Pada tanggal 31 July, Soviets mengumumkan bahwa mereka akan meluncurkan satelit pada musim gugur 1957.

Mengikuti tekanan dari American Rocket Society (Masyarakat Roket America), the National Science Foundation (Yayasan Sains national), and the International Geophysical Year, interest angkatan bersenjata meningkat dan pada awal 1955 Angkatan Udara Amerika dan Angkatan Laut mengerjai Project Orbiter, yang menggunakan wahana Jupiter C untuk meluncurkan satelit. Proyek ini berlangsung sukses, dan Explorer 1 menjadi satelit Amerika pertama pada tanggal 31 januari 1958.

Pada bulan Juni 1961, tiga setengah tahun setelah meluncurnya Sputnik 1, Angkatan Udara Amerika menggunakan berbagai fasilitas dari Jaringan Mata Angkasa Amerika (the United States Space Surveillance Network) untuk mengkatalogkan sejumlah 115 satelit yang mengorbit bumi.

Satelit buatan manusia terbesar pada saat ini yang mengorbit bumi adalah Station Angkasa Interasional (International Space Station).

Deskripsi              

Satelit merupakan sebuah benda di angkasa yang berputar mengikuti rotasi bumi. Satelit dapat dibedakan berdasarkan bentuk dan keguaananya seperti: satelit cuaca, satelit komonikasi, satelit iptek dan satelit militer.

Untuk dapat beroperasi satelit diluncurkan ke orbitnya dengan bantuan roket. Negara -negara maju seperti Amerika Serikat, Rusia, Perancis dan belakangan Cina, telah memiliki stasiun untuk melontarkan satelit ke orbitnya.

Posisi satelit pada orbitnya ada tiga macam, yaitu :

Low Earth Orbit (LEO): 500-2.000 km di atas permukaan bumi.
Medium Earth Orbit (MEO): 8.000-20.000 km di atas permukaan bumi.
Geosynchronous Orbit (GEO): 35.786 km di atas permukaan bumi.
Seluruh pergerakan satelit dipantau dari bumi atau yang lebih dikenal dengan stasiun pengendali. Cara kerja dari satelit yaitu dengan cara uplink dan downlink. Uplink yaitu transmisi yang dikirim dari bumi ke satelit, sedangkan downlink yaitu transmisi dari satelit ke stasiun bumi.

Komunikasi satelit pada dasarnya berfungsi sebagai repeater di langit. Satelit juga menggunakan transponder, yaitu sebuah alat untuk memungkinkan terjadinya komunikasi 2 arah.

Umumnya komunikasi satelit menggunakan banyak tranponders. Contohnya Intelsat VIII menggunkan 44 transponders dapat mengakomodir 22.500 telepon sirkuit dan 3 channel TV, pada masa sekarang ini sampai bisa mengakomodir komunikasi di Asia dan Afrika.

Antena satelit sangat penting peranannya dalam jaringan komunikasi satelit. Karena benda yang ini berfungsi sebagai penerima transimisi di setiap kawasan di dunia. Sedangkan satellite spacing (penempatan satelit) digunakan agar dalam melakukan transmisi lebih mudah berdasarkan kawasannya.

Sedangkan power system yang digunakan oleh satelit diperoleh melalui sinar matahari yang diubah ke bentuk listrik yang menggunakan Sel surya (Solar cells). Selain itu, satelit juga dilengkapi dengan sumber tenaga yang berdurasi 12 tahun yang merupakan bahan bakarnya agar dapat beroperasi.

Jenis satelit        

Skema jangkauan satelit Inmarsat.
Satelit astronomi adalah satelit yang digunakan untuk mengamati planet, galaksi, dan objek angkasa lainnya yang jauh.
Satelit komunikasi adalah satelit buatan yang dipasang di angkasa dengan tujuan telekomunikasi menggunakan radio pada frekuensi gelombang mikro. Kebanyakan satelit komunikasi menggunakan orbit geosinkron atau orbit geostasioner, meskipun beberapa tipe terbaru menggunakan satelit pengorbit Bumi rendah.
Satelit pengamat Bumi adalah satelit yang dirancang khusus untuk mengamati Bumi dari orbit, seperti satelit reconnaissance tetapi ditujukan untuk penggunaan non-militer seperti pengamatan lingkungan, meteorologi, pembuatan peta, dll.
Satelit navigasi adalah satelit yang menggunakan sinyal radio yang disalurkan ke penerima di permukaan tanah untuk menentukan lokasi sebuah titik dipermukaan bumi. Salah satu satelit navigasi yang sangat populer adalah GPS milik Amerika Serikat selain itu ada juga Glonass milik Rusia. Bila pandangan antara satelit dan penerima di tanah tidak ada gangguan, maka dengan sebuah alat penerima sinyal satelit (penerima GPS), bisa diperoleh data posisi di suatu tempat dengan ketelitian beberapa meter dalam waktu nyata.
Satelit mata-mata adalah satelit pengamat Bumi atau satelit komunikasi yang digunakan untuk tujuan militer atau mata-mata.
Satelit tenaga surya adalah satelit yang diusulkan dibuat di orbit Bumi tinggi yang menggunakan transmisi tenaga gelombang mikro untuk menyorotkan tenaga surya kepada antena sangat besar di Bumi yang dpaat digunakan untuk menggantikan sumber tenaga konvensional.
Stasiun angkasa adalah struktur buatan manusia yang dirancang sebagai tempat tinggal manusia di luar angkasa. Stasiun luar angkasa dibedakan dengan pesawat angkasa lainnya oleh ketiadaan propulsi pesawat angkasa utama atau fasilitas pendaratan; Dan kendaraan lain digunakan sebagai transportasi dari dan ke stasiun. Stasiun angkasa dirancang untuk hidup jangka-menengah di orbit, untuk periode mingguan, bulanan, atau bahkan tahunan.
Satelit cuaca adalah satelit yang diguanakan untuk mengamati cuaca dan iklim Bumi.
Satelit miniatur adalah satelit yang ringan dan kecil. Klasifikasi baru dibuat untuk mengkategorikan satelit-satelit ini: satelit mini (500–200 kg), satelit mikro (di bawah 200 kg), satelit nano (di bawah 10 kg).

Satelit observasi             

Satelit pengamat Bumi adalah satelit yang dirancang khusus untuk mengamati Bumi dari orbit, mirip dengan satelit mata-mata tetapi ditujukan untuk penggunaan non-militer seperti pengawasan lingkungan, meteorologi, pembuatan peta, dll.

Banyak jenis observasi dapat dibuat dari satelit, termasuk pengintai militer, pemetaan medan, fotografi astronomi, inspeksi internasional, pengamatan awan, dan fotografi Bumi-berguna dalam ilmu bumi.

Pengamatan dapat dilakukan dengan berbagai cara, menggunakan sensor yang beroperasi di bagian yang berbeda dari spektrum elektromagnetik. Sensor pertama kali digunakan oleh manusia adalah mata telanjang. Berikutnya datang fotografi dengan kemampuannya untuk merekam dalam jumlah besar bentuk permanen dari informasi rinci. Kemudian disusul pengembangan radar pengintai, intersepsi elektronik, dan pengintaian inframerah.

Observatorium angkasa        

Observatorium angkasa adalah segala alat yang berada di luar angkasa yang digunakan untuk mengamati planet, galaksi, dan benda planet lainnya.

Teleskop Hubble merupakan jenis Observatorium angkasa

Hubble's Pointing Control System
Beberapa observatorium telah diluncurkan ke orbit, dan kebanyakan telah memperluas pengetahuan kita tentang kosmos. Pengamatan astronomi dari Bumi dibatasi oleh pemfilteran dan gangguan radiasi elektromagnetik karena atmosfer Bumi. Oleh karena itu mengirim observatorium ke luar angkasa sangat diperlukan. Sebagaimana sebuah teleskop mengorbit Bumi di luar atmosfer dia tidak kena oleh twinkling (distorsi karena turbulensi panas udara) atau polusi cahaya dari sumber cahaya buatan di Bumi. Beberapa teleskop landas bumi (seperti Teleskop Keck I dan II, Very Large Telescope) dapat menghilangkan efek turbulensi atmosfer dengan bantuan optik adaptifnya.

Astronomi berbasis-angkasa bahkan lebih penting untuk menjangkau frekuensi yang berada di luar jendela optik dan jendela radio, kedua rentang panjang gelombang dari spektrum elektromagnetik yang tidak berkurang oleh atmosfer. Contohnya, Pengamatan sinar-X hampir tidak mungkin bila dilakukan dari Bumi, dan telah mencapai tempat yang penting dalam astronomi hanya karena satelit orbit yang dilengkapi dengan teleskop sinar-X seperti Observatorium Chandra.

Observatorium angkasa umumnya dibagi menjadi dua kelas: misi memetakan seluruh langit, dan observatorium yang membuat pengamatan bagian tertentu dari langit.

Banyak observatorium angkasa telah menyelesaikan misinya, dan lainnya masih beroperasi. Satelit telah diluncurkan oleh NASA, ESA dan Japan Aerospace Exploration Agency.

Satelit mata-mata           

Aerial view of Osama bin Laden's compound in the Pakistani city of Abbottabad made by the CIA.

Satelit mata-mata KH-4B Corona
Satelit Pengintai (secara resmi disebut satelit pemantau, Inggris: Reconnaissance satellite) adalah sebuah satelit pemantau Bumi atau satelit komunikasi yang digelar untuk keperluan militer maupun intelejen.

Biasanya merupakan teleskop bintang yang diarahkan ke Bumi dan bukan ke arah bintang. Generasi awal dari satelit ini ialah Corona[1][2] dan Zenit yang mekanismenya yaitu, mereka mengambil foto dari angkasa, kemudian melontarkan kaleng berisi negatif film ke bumi untuk diambil kemudian.

Satelit aktif dan pasif     

Starshine 3 merupakan jenis satelit pasif
Satelit pasif merupakan satelit yang mencerminkan radiasi elektromagnetik yang diterimanya tanpa modifikasi atau amplifikasi. Satelit pasif tidak dapat menghasilkan tenaga mereka tetapi hanya mencerminkan kekuatan yang diterimanya.

Satelit aktif adalah satelit yang dapat mengirimkan daya disebut satelit aktif. Mereka dapat memperkuat atau memodifikasi sinyal yang diterima kemudian untuk transmisi.

Miniaturisasi satelit        

Satelit miniatur atau satelit kecil adalah satelit dengan massa dan ukuran rendah, biasanya di bawah 500 kg (£ 1100). Sementara semua satelit tersebut dapat disebut satelit kecil, klasifikasi yang berbeda digunakan untuk mengkategorikan mereka berdasarkan massa.

Salah satu alasan untuk miniaturisasi satelit adalah untuk mengurangi biaya: satelit yang lebih berat membutuhkan roket yang lebih besar dengan daya dorong yang lebih besar yang juga memiliki biaya yang lebih besar. Sebaliknya, satelit yang lebih kecil dan lebih ringan membutuhkan kendaraan peluncuran yang lebih kecil dan lebih murah dan kadang-kadang dapat diluncurkan dalam kelipatan.

Klasifikasi Satelit miniatur:

Satelit kecil / Small satelit
Microsatelit
Nanosatelit
Picosatelit
Femtosatelit


Meteoroid


 METEOROID

Meteoroid adalah benda-benda kecil di tata surya yang ukurannya lebih kecil daripada asteroid tetapi lebih besar daripada sebuah molekul. Persatuan Astronomi Internasional pada sidang umum IX pada 1961 mendefinisikan meteoroid sebagai berikut :

“Sebuah benda padat yang berada/bergerak dalam ruang antarplanet, dengan ukuran lebih kecil daripada asteroid dan lebih besar daripada sebuah atom atau molekul.               ”
Ketika memasuki atmosfer sebuah planet, meteoroid akan terpanaskan dan akan menguap sebagian atau seluruhnya. Gas-gas di sepanjang lintasannya akan terionisasi dan bercahaya. Jejak dari gas bercahaya ini disebut sebagai meteor, atau bintang jatuh. Jika sebagian meteoroid ini mencapai tanah, maka akan disebut sebagai meteorit.

Meteoroid sendiri merupakan partikel kecil yang terlepas dari komet ataupun asteroid. Dari ketiganya, asteroid merupakan benda yang paling menarik untuk dipelajari para ilmuwan.

Seperti diketahui, sampai sejauh ini, ilmuwan belum bisa memahami sepenuhnya bagaimana kehidupan awal terbuat dari zat organik yang tidak hidup, bisa tumbuh dan berkembang di Bumi. Dengan mempelajari asteroid, kita bisa mengetahui lebih banyak.

Dilansir Fox News, asteroid seperti 2 Pallas dan 10 Hygiea, yang diyakini pernah memiliki air, tampak memiliki senyawa organik (berbasis karbon) di dalamnya.

“Saat ini, asteroid tersebut memiliki komposisi kimia yang lebih primitif dibandingkan dengan Bumi. Kondisinya serupa dengan saat tata surya kita saat masih baru terbentuk,” kata Carol Raymond, Deputy Principal Investigator NASA.

“Dengan mempelajarinya, kita bisa mengetahui bagaimana kehidupan bisa muncul di planet ini,” ucapnya.

Raymond menyebutkan, ada beberapa kondisi yang menjadikan Bumi sangat kondusif bagi kehidupan pada masa lalu. “Selain itu, ilmuwan berpendapat bahwa asteroid yang mendarat di Bumi pada zaman dahulu kala, telah memberikan materi pembentuk yang membantu memulai kehidupan di planet ini,” ucapnya.

Meteor adalah jejak bercahaya di langit dihasilkan ketika Meteoroid membakar di atmosfer. Hal ini umumnya disebut sebagai "bintang jatuh". Kadang-kadang mungkin banyak meteoroid menghantam atmosfer sekitar waktu yang sama, memberi kami hujan meteor.

Hal ini mengacu pada partikel itu sendiri tanpa kaitannya dengan fenomena itu menghasilkan ketika memasuki atmosfer bumi (meteor). Meteoroid adalah materi berputar di sekitar matahari atau benda dalam ruang antarplanet yang terlalu kecil untuk disebut sebuah asteroid atau komet. Bahkan partikel yang lebih kecil disebut micro-meteoroid atau butir debu kosmik, yang mencakup materi antar bintang yang harus terjadi untuk memasuki sistem surya kita. Meteoroid menjadi meteorit jika itu bertahan terjun melalui atmosfer dan mencapai permukaan bumi.

Meteorit Sebagian besar berasal dari asteroid, termasuk beberapa diyakini berasal khususnya dari 4 Vesta (salah satu asteroid terbesar di tata surya kita). Beberapa mungkin berasal dari komet. Dari 10-an ribu diketahui, jumlah yang sangat kecil meteorit telah terbukti menjadi Lunar (23 menemukan) atau Mars (mungkin sebanyak 18) asal. Meteorit terbesar yang diketahui adalah tentang ukuran dari sebuah bilik telepon. Tapi ada bukti jelas bahwa benda bahkan lebih besar telah menghantam bumi pada masa lalu.


Meskipun meteorit mungkin tampak batu hanya membosankan, mereka sangat penting dalam bahwa kita dapat menganalisis mereka hati-hati dalam laboratorium kami. Selain dari beberapa kilogram batuan bulan yang dibawa kembali oleh Apollo dan misi Luna, meteorit hanya materi kita bukti alam semesta di luar bumi.

Komposisi         

Pada dasarnya, ada dua jenis meteorit: Besi (sekitar 4,8% dari meteorit yang ditemukan) dan Stony (sekitar 94%). Meteorit batuan yang paling umum, juga memiliki sedikit lebih beragam. ada tiga sub-klasifikasi stonys: chondrites, chondrules mengandung, chondrites karbonan, mengandung chondrules bersama dengan mineral volatile dan Achondrites yang tidak mengandung chondroles. Lalu, ada jenis yang sangat langka akhir dari meteorit dicampur, disebut sebagai Stony-Besi (sekitar 1,2%).

Besi Meteorit    

Meteorit ini terbuat dari paduan besi-nikel kristal. Para ilmuwan percaya bahwa mereka menyerupai inti luar Bumi.

Pola Widmanstatten terdiri dari dua logam. Kedua paduan Nikel dan Besi crystalize pada suhu yang sedikit berbeda. Jadi sedikit bahwa laju pendinginan harus sekitar 1 derajat per juta tahun agar pola ini muncul. Hal ini hanya bisa terjadi di inti cair dari sebuah planet, dan berfungsi sebagai bukti bahwa benda-benda tidak bisa datang dari bumi (formasi tersebut tidak bisa mendapatkan ke permukaan bumi sekarang).


Asteroid


 ASTEROID

    Asteroid, disebut juga planet minor atau planetoid, adalah benda berukuran lebih kecil daripada planet, tetapi lebih besar daripada meteoroid, umumnya terdapat di bagian dalam Tata Surya (lebih dalam dari orbit planet Neptunus). Asteroid berbeda dengan komet dari penampakan visualnya. Komet menampakkan koma ("ekor") sementara asteroid tidak. Istilah ini secara historis ditujukan untuk semua objek astronomis yang mengelilingi matahari dan setelah diobservasi tidak memiliki karakteristik komet aktif.

Ada jutaan asteroid, yang menurut pemikiran banyak orang adalah sisa-sisa kehancuran planetisimal, material di dalam solar nebula matahari muda yang tidak pernah tumbuh besar untuk menjadi planet.[1] Mayoritas asteroid yang telah diketahui mengorbit pada sabuk asteroid di antara orbit Mars dan Yupiter atau berbagi orbit dengan Yupiter (Asteroid Troya Yupiter). Tetapi, terdapat keluarga orbit lainnya dengan populasi signifikan, termasuk asteroid dekat-Bumi. Asteroid individual diklasifikasikan berdasarkan karakteristik spektrum emisi mereka, dengan mayoritas terbagi menjadi tiga kelompok utama: tipe-C, tipe-M, dan tipe-S. Kelompok ini diberi nama dan umumnya diidentifikasi dari komposisi karbon, logam, dan silikat.

Hanya satu asteroid, 4 Vesta, yang memiliki permukaan relatif reflektif, secara normal dapat dilihat dengan mata telanjang dan ini hanya pada langit yang sangat gelap dan posisinya memungkinkan. Asteroid-asteroid kecil yang melintas dekat dengan bumi jarang dapat dilihat dengan mata telanjang dalam waktu yang singkat.[2] Hingga April 2016, Pusat Planet Minor memiliki data lebih dari 1,3 juta objek di dalam dan luar Tata Surya, 750.000 di antaranya telah memiliki informasi yang cukup untuk penamaan bernomor.[3]

Penemuan        

243 Ida dan bulannya, Dactyl. Dactyl adalah satelit asteroid pertama yang ditemukan.
Asteroid yang pertama kali ditemukan adalah Ceres pada tahun 1801 oleh Giuseppe Piazzi dan pada awalnya dipertimbangkan sebagai planet baru.[note 1] Penemuan ini diikuti dengan penemuan benda-benda lainnya yang serupa, yang dengan peralatan saat itu, terlihat sebagai titik-titik cahaya, seperti bintang, menunjukkan cakram planet dalam bentuk kecil atau tidak ada sama sekali, meskipun secara mudah dapat dibedakan dari bintang karena gerakan mereka yang terlihat. Hal ini mendorong astronom Sir William Herschel untuk mengusulkan istilah "asteroid",[4] berasal dari bahasa Yunani, ἀστεροειδής asteroeidēs berarti 'seperti bintang, berbentuk bintang', dari bahasa Yunani Kuno, ἀστήρ astēr yang artinya 'bintang, planet'.

Metode-metode historis           
  
Metode-metode penemuan asteroid telah berkembang secara dramatis dalam dua abad terakhir. Pada beberapa tahun terakhir abad ke-18, Baron Franz Xaver von Zach mengorganisasi suatu kelompok terdiri atas 24 orang astronom mencari planet yang hilang pada jarak sekitar 2,8 au dari matahari berdasarkan hukum Titius-Bode karena hukum itu juga digunakan oleh Sir William Herschel untuk menemukan planet Uranus tahun 1781. Tugas ini membutuhkan grafik langit yang ditulis tangan berisi semua bintang pada sabuk zodiak hingga batas penglihatan yang disepakati. Malam berikutnya, langit akan dipetakan lagi seperti grafik sebelumnya dan diharapkan setiap objek yang bergerak akan terlihat. Gerakan planet hilang yang dicari sekitar 30 detik busur per jam secara mudah terlihat oleh pengamat.


Gambar asteroid (Ceres dan Vesta) pertama dari Mars – dilihat dari Curiosity (20 April 2014).
Objek pertama, Ceres, tidak ditemukan oleh anggota kelompok itu, tetapi lebih karena ketidaksengajaan tahun 1801 oleh Giuseppe Piazzi, direktur observatorium Palermo di Sisilia. Ia menemukan objek baru mirip bintang di Taurus dan mengikuti perpindahan objek ini selama beberapa malam. Kemudian pada tahun yang sama, Carl Friedrich Gauss menggunakan hasil observasi tersebut untuk menghitung orbit objek yang belum dikenal itu, yang diketahui berada di antara planet Mars dan Jupiter. Piazzi mengambil namanya dari Seres, dewi pertanian Romawi.

Tiga asteroid lain, yaitu (2 Pallas, 3 Juno, dan 4 Vesta) ditemukan beberapa tahun kemudian. Vesta ditemukan tahun 1807. Setelah delapan tahun mencari tanpa hasil, sebagian besar astronom berpendapat bahwa tidak ada lagi objek baru dan tidak melanjutkan pencarian.

Namun, Karl Ludwig Hencke bertahan dan mulai mencari asteroid lagi tahun 1830. Lima belas tahun kemudian, ia menemukan 5 Astraea, asteroid baru pertama dalam kurun waktu 38 tahun. Ia juga menemukan 6 Hebe kurang dari dua tahun kemudian. Setelah itu, astronom-astronom lain bergabung dalam pencarian dan sedikitnya satu asteroid baru ditemukan setiap tahun (kecuali dalam masa perang tahun 1945). Pemburu-pemburu asteroid ternama pada awal era ini adalah J. R. Hind, Annibale de Gasparis, Robert Luther, H. M. S. Goldschmidt, Jean Chacornac, James Ferguson, Norman Robert Pogson, E. W. Tempel, J. C. Watson, C. H. F. Peters, A. Borrelly, J. Palisa, Henry bersaudara, dan Auguste Charlois.

Tahun 1891, Max Wolf merintis penggunaan astrofotografi untuk mendeteksi asteroid, yang terlihat sebagai garis-garis pendek pada pelat fotografis pajanan lama. Metode ini secara dramatis meningkatkan tingkat deteksi dibandingkan dengan metode-metode visual sebelumnya. Wolf sendiri menemukan 248 asteroid, dimulai dengan 323 Brucia, sedangkan hingga saat itu asteroid yang telah ditemukan baru berjumlah 300 lebih sedikit. Setelah diketahui bahwa masih banyak lagi, kebanyakan astronom tidak memedulikannya, menyebutnya "kutu langit",[5] sebuh frasa yang secara beragam dikaitkan dengan Eduard Suess[6] dan Edmund Weiss.[7] Bahkan hingga seabad kemudian, hanya beberapa ribu asteroid telah diidentifikasi, dinomori, dan diberi nama.


Komet


 KOMET 

    Komet adalah benda langit yang mengelilingi matahari dengan garis edar berbentuk lonjong, parabolis, atau hiperbolis.[1]

Istilah "komet" berasal dari bahasa Yunani, kometes (κομήτης) yang berarti "rambut panjang".[2] Istilah lainnya adalah bintang berekor[3] yang tidak tidak tepat karena komet sama sekali bukan bintang[3]. Orang Jawa menyebutnya sebagai lintang kemukus karena memiliki ekor mirip 'kukus' atau berdebu.[4] Di samping itu, ekornya juga mirip buah kemukus yang dikeringkan.

Komet terbentuk dari es dan debu.[5] Komet terdiri dari kumpulan debu dan gas yang membeku pada saat berada jauh dari Matahari.[1] Ketika mendekati Matahari, sebagian bahan penyusun komet menguap membentuk kepala gas dan ekor.[5] Komet juga mengelilingi Matahari, sehingga termasuk dalam sistem tata surya.[6] Komet merupakan gas pijar dengan garis edar yang berbeda-beda.[6] Panjang "ekor" komet dapat mencapai jutaan km.[2] Beberapa komet menempuh jarak lebih jauh di luar angkasa daripada planet.[7] Beberapa komet membutuhkan ribuan tahun untuk menyelesaikan satu kali mengorbit Matahari.[7]

Komet dapat dilihat ketika masih jauh dari matahari, bagian yang pertama kali dilihat adalah inti komet. Komet merupakan benda angkasa yang mirip asteroid, tetapi hampir seluruhnya terbentuk dari gas (karbon dioksida, metana, air) dan debu yang membeku.

Komet sering juga disebut dengan bintang berekor. Komet memiliki orbit atau lintasan yang berbentuk elips, lebih lonjong dan panjang daripada orbit planet. Komet merupakan benda angkasa seperti lapisan batu yang terlihat mempunyai cahaya dikarenakan adanya gesekan-gesekan atom-atom di udara.

Sejarah komet 

Selama berabad-abad, kemunculan sebuah komet dipercaya sebagai suatu pertanda akan datangnya sebuah malapetaka besar. Penampakan sebuah komet dan sesekali pula pergerakannya dicatat secara akurat. Astronom Babilonia dan Tiongkok mempercayai bahwa komet adalah objek yang beredar di angkasa sebagaimana halnya planet. Bangsa Yunani beranggapan bahwa komet adalah fenomena atmosfer, sejenis dengan uap air yang berasal dari permukaan Bumi. Pandangan ini sempat diterima secara meluas hingga pada abad XVI, saat Tycho Brahe memaparkan pandangannya bahwa komet tidak hanya sebuah fenomena alam, tetapi diyakini sebagai sebuah benda angkasa yang letaknya dari bumi lebih jauh daripada Bulan.

Seabad kemudian, Isaac Newton menemukan sebuah metode untuk menghitung orbit dari sebuah komet berdasarkan lintasan yang dapat diamati di angkasa. Newton menentukan bahwa komet yang tampak pada bulan Desember 1680 mengikuti orbit parabola yang sangat panjang. Edmond Halley, seorang ilmuwan yang hidup sezaman dengan Newton menemukan bahwa orbit dari komet yang pernah muncul pada tahun 1531, 1607, dan 1682 adalah hampir identik. Penemuan ini membawanya kepada suatu kesimpulan bahwa ketiga penampakan tersebut melibatkan komet yang sama. Ia kemudian meramalkan bahwa komet tersebut akan muncul lagi pada tahun 1758. Sayang, usianya tidak cukup panjang untuk bisa menyaksikan kebenaran ramalannya itu. Penampakan komet tersebut–yang kemudian dinamai komet Halley–ternyata telah tercatat sebanyak 20 kali sejak tahun 239 SM. Penampakannya yang terakhir adalah pada tahun 1985-1986.

Komet yang baru ditemukan biasanya diberi nama menurut tahun penemuannya ditambah sebuah huruf yang mengindikasikan urutan penampakan komet itu pada tahun saat komet tersebut ditemukan. Saat tanggal waktu komet mencapai titik perihelion dapat diketahui, komet itu segera dinamai menurut angka tahun kalender saat itu dikuti dengan angka Romawi yang menunjukkan urutan kronologis perlintasan pada perihelion pada tahun itu (misalnya, 1882 II). Beberapa komet dinamai menurut nama penemunya, misalnya komet Halley; juga komet Hale-Bopp yang dinamai menurut nama dua orang astronom amatir yang melaporkan penampakannya pada malam yang sama pada tahun 1995.

Asal-usul komet             

Komet berasal dari awan Oort yang terletak di sisi luar sistem tata surya. Awan Oort berisi triliunan komet. Seiring berjalannya waktu, komet-komet berpisah dari awan dan terlempar ke matahari. Inti komet terletak di pusat, terbuat dari gas serta debu batuan dan merupakan benda padat yang stabil. Pada saat komet mendekati matahari, sebagian materi tersebut terlempar dari permukaan inti komet.

Ekor ion, dapat mencapai 100 juta kilometer, terbentuk dari proses ionisasi gas pada saat berinteraksi dengan angin matahari; dan ekor komet selalu menjauhi matahari. Hal ini disebabkan oleh angin matahari menerpa awan gas yang melingkupi komet. Ketika komet mendekati matahari, ekornya terbentang ke belakangnya.

Komet baru yang saat ini teramati tampaknya berasal dari selubung benda es yang besar yang berada sekitar satu tahun cahaya dari Matahari. Model ini dikembangkan tahun 1950-an oleh astronom Belanda Jan Oort (1900–1992). Awan Oort yang belum teramati tersebut dapat memuat 100 miliar benih komet.

Gangguan gravitasi dari bintang lain di sekitar Matahari dapat mengganggu keseimbangan awan ini dan mengirimkan beberapa komet secara acak menuju Matahari. Komet tersebut akan menjadi komet periode panjang, yang orbitnya hampir parabola dan periode revolusinya mengelilingi Matahari mencapai 200 hingga jutaan tahun.

Komet dengan periode yang lebih pendek mengorbit seperti planet dan berasal dari Sabuk Kuiper. Sabuk ini berada lebih dekat ke Tata Surya dalam daripada Awan Oort.

Bila sebuah komet lewat di dekat sebuah planet-planet besar, terutama Yupiter, komet akan dipengaruhi oleh gravitasi planet tersebut. Komet dapat jatuh ke planet; atau dipercepat lajunya dan keluar dari Tata Surya, atau bergerak dalam orbit lonjong lebih dekat lagi ke Matahari.

Banyak teori yang telah dicetuskan dalam seabad terakhir ini mengenai asal mula komet, namun salah satu yang paling luas diterima saat ini menyebutkan bahwa komet terbentuk pada saat yang sama dengan saat terbentuknya tata surya. Pada tahun 1950, Jan Oort, seorang astronom Belanda mengajukan teorinya bahwa Matahari dikelilingi oleh “kabut” besar yang terdiri dari material komet pada jarak sekitar 1000 kali garis terngah tata surya yang kita ketahui. Teori ini kemudian diikuti dengan teori dari Gerard Kuiper, pada tahun 1951 yang menggagas bahwa sabuk material komet tersebut terletak pada suatu daerah yang berjarak beberapa ratus kali jarak Bumi-Matahari. Gangguan yang berasal dari objek di luar tata surya dapat menyebabkan beberapa di antara material tersebut keluar dari sabuk komet dan memasuki tata surya bagian dalam sebagai sebuh komet, di mana komet dengan periode pendek diduga muncul dari sabuk ini, yang kemudian dinamai sebagai sabuk Kuiper.

Kedua teori ini dapat diterima secara luas dikalangan para astronom. Sebuah benda angkasa yang dinamai Chiron, pernah dianggap sebagai sebuah asteroid, kini dikelompokkan sebagai komet Kuiper-belt, dan sementara itu beberapa anggota dari sabuk Kuiper telah dapat diamati sejak 1992. Keberadaan “sabuk” tersebut dapat dibuktikan secara langsung pada tahun 1995 melalui hasil pengamatan lewat Teleskop Antariksa Hubble yang berhasil mengamati 30 objek mirip komet yang berada di luar orbit planet Pluto. Para astronom dewasa ini memperkirakan sejumlah 70.000 objek berukuran cukup besar–dan tak terhitung jumlahnya yang berukuran lebih kecil–menghuni daerah sabuk Kuiper dengan jarak antara 30 hingga 50 SA.

Banyak di antara komet, khususnya yang tergolong memiliki periode pendek, pecah secara perlahan-lahan, terutama karena pengaruh kekuatan gravitasi Matahari. Beberapa di antaranya telah diamati “tercebur” kedalam Matahari. Pengurangan kecerlangan dari komet berperiode pendek juga dapat kita amati. Komet juga menghasilkan buangan di belakang orbitnya, dalam bentuk jutaan meteoroid. Saat Bumi melintasi orbit sebuah komet, dapat disaksikan hujan meteor.

Bagian-bagian komet     

Bagian-bagian komet terdiri dari inti, koma, awan hidrogen, dan ekor.[8] Bagian-bagian komet sebagai berikut.[9]

Inti, merupakan bahan yang sangat padat, diameternya mencapai beberapa kilometer, dan terbentuk dari penguapan bahan-bahan es penyusun komet, yang kemudian berubah menjadi gas.

Koma, merupakan daerah kabut atau daerah yang mirip tabir di sekeliling inti.
Lapisan hidrogen, yaitu lapisan yang menyelubungi koma, tidak tampak oleh mata manusia. Diameter awan hidrogen sekitar 20 juta kilometer.

Ekor, yaitu gas bercahaya yang terjadi ketika komet lewat di dekat Matahari.
Inti komet adalah sebongkah batu dan salju.[10] Ekor komet arahnya selalu menjauh dari Matahari.[8] Bagian ekor suatu komet terdiri dari dua macam, yaitu ekor debu dan ekor gas.[11] Bentuk ekor debu tampak berbentuk lengkungan, sedangkan ekor gas berbentuk lurus.[11] Koma atau ekor komet tercipta saat mendekati Matahari yaitu ketika sebagian inti meleleh menjadi gas.[12] Angin Matahari kemudian meniup gas tersebut sehingga menyerupai asap yang mengepul ke arah belakang kepala komet.[12] Ekor inilah yang terlihat bersinar dari bumi.[12] Sebuah komet kadang mempunyai satu ekor dan ada yang dua atau lebih.[11]

Saat bersinar di langit, sebuah komet yang terang memiliki kepala dengan inti mirip bintang yang disebut nukleus. Nukleus dikelilingi oleh halo yang berpendar yang disebut koma dan ekor transparan yang panjang. Nukleus berukuran beberapa kilometer. Koma panjangnya dapat mencapai 100 ribu km atau lebih keluar dari nukleus. Ekor dapat berukuran sepanjang jutaan kilometer di antariksa.

Pengamatan ultraviolet dari pesawat luar angkasa menunjukkan awan hidrogen besar yang menyelimutinya. Awan hidrogen ini dapat tumbuh mencapai puluhan juta kilometer. Awan ini tidak dapat dilihat dari bumi.

Inti (nukleus) dan koma         

Hampir seluruh massa komet terpusat pada nukleus (inti komet). Diameter dari nukleus biasanya berkisar antara beberapa kilometer dengan kepadatan antara 0,1 hingga 1 g/cm³, mengindikasikan bahwa kepadatannya termasuk renggang. Berdasarkan model “bola salju kotor” yang digagas oleh Frel L. Whipple, yang berdasarkan penelitian lanjutan kemudian terbukti kebenarannya, nukleus komet tesusun dari sekumpulan materi yang terdiri atas air, karbon monoksida, metanol, amonia, dan metana. Seluruhnya dalam keadaan beku serta tercampur dengan debu. Saat komet mendekati Matahari, materi beku tersebut menyublim dan membentuk kabut gas dan debu—yang disebut koma—di sekeliling nukleus. Makin dekat ke Matahari, gas yang terbentuk semakin banyak. Partikel-partikel pada komet terdorong dari nukleus oleh tekanan radiasi dan angin Matahari (aliran partikel Matahari).

Rata-rata diameter dari koma adalah sekitar 100.000 km, namun massanya terbilang kecil. Beberapa molekul terdekomposisi dan terionisasi oleh sinar ultraviolet dalam pelepasannya dari nukleus ke ekor komet. Hasil-hasil yang dapat diamati dari proses ini meliputi atom-atom hidrogen dan oksigen, air, dan radikal hidroksil (OH). Molekul dan senyawa karbon juga ditemukan dalam konsentarasi yang 100 kali lebih rendah dari nukleus, sementara jumlah molekul NH, NHH, CH, dan molekul nitrogen ditemukan dengan konsentrasi 1000 kali lebih rendah. Juga terdeteksi karbon monosulfida (CS) dan serta atom dan molekul sulfur. Sementara itu unsur etana juga ditemukan di komet Hyakutake. Bagian koma dari sebuah komet umumnya mengecil saat komet mendekati Matahari, dan molekulnya terdekomposisi lebih cepat oleh angin Matahari sehingga terdorong ke arah ekor komet.

Miliaran komet mungkin mengorbit jauh di pinggir terluar tata surya, namun tidak dapat dilihat dari bumi. Komet-komet itu bersinar di langit hanya saat bergerak di dekat Matahari. Penjelasan yang paling diterima luas mengenai komet adalah model "bola salju kotor", yang diajukan oleh astronom AS, Fred Whipple tahun 1950.

Saat sebuah komet berada di bagian jauh tata surya, komet hanya terdiri dari nukleus. Tanpa ekor dan tanpa koma. Bentuk dan permukaannya tidak beraturan. Nukleus tersusun sebagian besar oleh air beku dan gas beku lainnya (salju) yang bercampur dengan padatan logam atau batuan (kotor). Kepadatannya sangat rendah begitu juga gravitasi permukaannya.

Citra dari pesawat ruang angkasa menunjukkan bahwa nukleus bekunya berwarna hitam gelap dan berotasi. Ketidakteraturan permukaan inti terdiri atas retakan, bukaan dan kawah.

Nukleus menjadi aktif saat komet mendekat matahari. Awan debu dan gas, terutama tersusun dari uap air, menyembur dari celah permukaan setiap kali nukleus menghadap ke Matahari.

Gas yang terlepas dari nukleus terdiri dari 80 persen uap air dengan sisa zat lain seperti karbon dioksida, karbon monoksida, amonia, dan metana. Sebagian butiran debu tersusun dari silikat; sementara sisanya berupa debu yang tersusun atas karbon, hidrogen, oksigen, dan nitrogen. Es, debu, dan gas ini terbentuk pada suhu yang rendah.

Sebagian butiran debu yang baru terkumpul memuat mineral yang terbentuk pada suhu tinggi. Debu ini terbentuk saat komet dekat dengan matahari. Partikel yang berasal dari lingkungan yang berbeda ini berkumpul pada komet yang letaknya jauh dari matahari, masih misterius.

Para ilmuwan terkesan ketika menemukan adanya molekul organik kompleks dalam materi yang mereka kumpulkan dari komet, yang mungkin dapat memiliki makna penting bagi asal-usul kehidupan di Bumi.

Saat nukleus komet memasuki tata surya dalam sekitar beberapa ratus juta kilometer dari Matahari, ia mengalami pemanasan. Gas menyublim dan lepas ke antariksa bersama debu dari permukaannya. Gravitasi komet terlalu lemah untuk menahan lepasnya gas dan debu. Mereka menyebar ke sekitar nukleus sejauh ribuan kilometer dan membentuk koma.

Komet bersinar karena gas ini berpendar dan debu memantulkan sinar matahari. Astronom menggunakan teleskop besar untuk mencitrakan sekitar 25 koma per tahun.

Ekor komet         

Saat komet yang menyala dapat terlihat, ciri yang paling mencolok adalah ekor. Dalam penampakan komet Halley pada tahun 1910, ekor komet terentang hingga lebih dari 90º di lengkung langit. Dalam penampakan komet Halley yang terakhir sekitar tahun 1985-1986, titik pemanjangan ini tercapai saat komet berada dalam sudut yang jauh dari Matahari, sehingga tidak terlihat terlalu dramatis di langit malam.

Panjang ekor komet berkisar antara 1 juta hingga 100 juta km. Ekor komet biasanya pertama kali muncul saat komet berada pada jarak 1,5 SA dari Matahari. Meskipun berukuran sedemikian besar, namun setiap 1 km³ volume ekor komet mengandung materi lebih sedikit dibandingkan dengan 1 mm³ udara.

Saat sebuah komet berada di dekat Matahari, komet dapat memunculkan ekor gas dan debu yang dilepaskan dari nukleus. Radiasi ultraviolet mengubah gas menjadi radikal bebas dan ion. Ion berinteraksi dengan partikel bermuatan yang disemburkan oleh Matahari melalui angin matahari. Ion ini pada akhirnya membentuk ekor gas atau ion yang selalu menjauhi matahari.

Tekanan radiasi, atau pancaran sinar matahari yang kuat, mendorong partikel debu keluar. Komet terus bergerak dan ekor debunya melengkung di belakangnya. Ekor komet begitu tipis sehingga hanya dapat dilihat dengan teropong bintang. Molekul dan atom netral terus mengembang keluar hingga mereka terionisasi. Atom-atom hidrogen membentuk awan hidrogen besar. Awan hidrogen yang mengelilingi nukleus komet Halley tahun 1986 tumbuh hingga diameter ratusan ribu kilometer.

Efek ion hidrogen yang dilepaskan oleh Komet Halley pada angin matahari dideteksi sejauh 35 juta kilometer dari nukleus. Sebuah gelombang kejut ketika gas komet menahan dan memperlambat angin matahari ditemukan sekitar 400 ribu kilometer di depan komet.

Ekor komet terbentuk dari gas koma dan selalu menjauhi Matahari. Semula, diduga bahwa tekanan dari radiasi Matahari adalah satu-satunya penyebabnya, namun saat ini telah diketahui bahwa angin Matahari memiliki peranan yang lebih besar dalam menentukan arah ekor komet. Angin Matahari mengandung partikel-partikel yang terlempar dari Matahari. Kekuatan tekanan dari partikel-partikel ini terhadap molekul gas dalam koma berkisar 100 kali lebih besar dari kekuatan gravitasi Matahari, dengan demikian molekul-molekul tersebut terdorong oleh angin Matahari. Angin Matahari tidaklah stabil, dan dapat mempengaruhi struktur ekor komet. Flare Matahari dan gangguan lainnya pada Matahari sesekali dapat membuat ekor komet terlihat bergolak atau berbelok.

Sebuah komet dapat memiliki satu daripada dua jenis ekor, atau bahkan kedua-duanya sekaligus–yang biasa disebut sebagai komet berekor ganda. Jenis ekor komet yang pertama adalah ekor yang memanjang dan hampir lurus, memiliki struktur yang mirip serabut yang terdiri dari gas yang terionisasi. Tipe ini digolongkan sebagai ekor Tipe I. Sedangkan tipe ekor komet lainnya yang tergolong sebagai Tipe II, atau “ekor debu” berbentuk kelokan yang tajam dan lebih kabur. Tipe ini tersusun atas debu yang diterpa oleh cahaya Matahari. Sebuah komet dapat memiliki beberapa ekor debu disamping juga ekor gas (Tipe I). Beberapa komet diketahui memiliki ekor yang ganjil, di mana ekornya menunjuk ke arah Matahari (contohnya adalah komet Arent Roland, 1957 III). Ekor komet jenis ini terdiri dari lapisan debu yang sangat tipis yang keluar dari lapisan terluar komet dan terkumpul disekitar orbit komet. Gas yang menyusun ekor komet di antaranya CO+, molekul nitrogen, CH+, karbon dioksida, dan OH+. Ion-ion tersebut, seperti yang juga dijumpai pada koma terbentuk saat molekul yang lebih besar terpisahkan oleh angin Matahari.

Jet         

Pemanasan yang tidak merata dapat menyebabkan gas baru dihasilkan keluar dari titik lemah pada permukaan inti komet, mirip dengan geyser. Aliran gas dan debu dapat menyebabkan inti berputar, dan bahkan terpecah. Pada tahun 2010 terungkap es kering (karbon dioksida padat) dapat mengalir keluar dari inti komet. Ini karena pesawat ruang angkasa terbang mendekat sehingga dapat melihat tempat jet itu keluar, kemudian mengukur spektrum inframerah pada saat itu yang menunjukkan bahan-bahan penyusunnya.

Fenomena komet           

Komet merupakan fenomena alam yang amat menarik untuk diamati. Pada tahun 1705 Edmond Halley memperkirakan bahwa komet terlihat pada tahun 1531, 1607, 1682, dan 1758. Komet Halley—begitu nama komet tersebut—terakhir terlihat pada tahun 1986 silam. Inti atau pusat dari Komet Halley di perkirakan kurang lebih 16 × 8 × 8 km. Inti dari Komet Halley sangat gelap.

Diperkirakan Komet Halley akan tampak lagi tahun 2061, karena kemunculan Komet Halley ini 76 tahun sekali. Komet-komet lain yang cukup dikenal adalah Komet West, Komet Encke (muncul tiga tahun sekali), Komet Hyakutake, dan Komet Hale-Bopp.

Komet merupakan benda kecil yang sangat sulit untuk dilihat. Meskipun demikian, benda tersebut merupakan satu-satunya planetoida yang dikenal sejak zaman purbakala. Ketika komet mendekati matahari, terjadi efek visual yang spektakuler. Komet tersebut menguap dan memiliki ekor yang terang, membentang hingga puluhan juta kilometer di belakangnya. Saat ini diketahui terdapat banyak komet yang telah menghantam planet-planet. Komet mungkin turut berperan dalam mengembangkan kehidupan di Bumi. Komet berbeda dengan asteroid, benda tersebut berbahan utama es dan debu. Para ahli berpendapat bahwa komet merupakan bola salju kotor.

Komet atau benda bergerak di langit jumlahnya banyak sekali. Masing-masing komet memang telah diberi nama, sekalipun masyarakat awam tak akan mengenal seluruh nama-nama komet tersebut. Salah satu nama komet yang mungkin sering didengar adalah komet Halley. Masing-masing komet tidak saja diberi nama yang berbeda namun sebenarnya bila diamati dengan saksama, memiliki ciri-ciri yang berbeda pula satu sama lainnya.

Komet adalah salah satu benda langit yang sering diartikan sebagai bintang jatuh. Namun sebenarnya komet bukanlah bintang, ia adalah benda langit yang mengitari matahari dan memiliki orbitnya sendiri seperti planet. Dengan demikian komet seperti juga planet akan terus berputar mengitari matahari pada orbitnya.

Hal unik dari benda langit ini adalah ketika komet mendekati matahari, komet akan membentuk suatu atmosfer di sekelilingnya. Ketika komet melaju dengan sangat cepat, atmosfer ini bahkan bisa membentuk sebuah ekor sehingga komet terlihat sangat indah. Pada saat membentuk ekor inilah seringkali terlihat dari bumi sebagai sebuah bintang berekor, sehingga ada pula yang mengatakan komet sebagai bintang berekor.

Pengamatan lebih detail tentang komet tentu saja dengan menggunakan teropong bintang, sehingga bisa mengamati lebih detail tentang bentuk dan ciri-ciri khususnya. Seperti telah disinggung sebelumnya selain memiliki nama yang berbeda, masing-masing komet ini juga memiliki ciri dan karakter yang berbeda.

Orbit komet       

Semua komet beredar di tata surya dalam orbit elips (bulat telur). Komet yang tercatat memiliki periode orbit terpendek adalah komet Encke (3,3 tahun), sedangkan komet yang memiliki periode panjang, memerlukan waktu hingga ribuan tahun untuk satu kali mengorbit Matahari. Beberapa komet yang diamati menunjukkan bahwa komet itu hanya sekali muncul dalam orbit parabolik atau hiperbolik yang membawanya mendekati Matahari hanya dalam sekali seumur hidupnya, menimbulkan suatu kemungkinan bahwa komet tersebut mungkin berasal dari luar tata surya, namun kurangnya data membuat dugaan ini sulit untuk dibuktikan.

Hampir seluruh komet yang kita kenali mendekati Matahari dalam jarak antara 0,005 hingga 2,5 SA (satuan astronomi) pada perihelion. Apabila perihelion komet lebih jauh dari 2,5 SA, komet biasanya tidak dapat diamati. Banyak di antara komet memiliki aphelion di sekitar orbit planet luar. Sekelompok komet yang terdiri dari sekitar 75 komet diketahui sebagai “keluarga dekat” Yupiter dan memiliki aphelion di sekitar orbit planet tersebut. Beberapa di antaranya merupakan kelompok komet yang mengorbit secara bersama-sama. Komet jenis ini biasanya merupakan sisa-sisa dari sebuah komet raksasa yang kemudian pecah dikarenakan pengaruh gravitasi dari Matahari atau sebuah planet.

Para ilmuwan telah memindai sekitar 900 orbit komet. Beberapa di antaranya memiliki orbit di antara garis edar planet Venus dan Mars dan memerlukan beberapa tahun untuk berevolusi. Sementara yang lainnya, memiliki orbit yang eksentris, yaitu berbentuk lonjong dan memerlukan waktu berabad-abad untuk melakukan revolusi. Komet sering diklasifikasikan menurut panjang periode orbit mereka: semakin lama periode lebih panjang elips.


Galaksi


 GALAKSI

    Galaksi adalah sebuah sistem masif yang terikat gaya gravitasi yang terdiri atas bintang (dengan segala bentuk manifestasinya, antara lain bintang neutron dan lubang hitam), gas dan debu medium antarbintang, dan materi gelap–komponen yang penting namun belum begitu dimengerti.[1][2] Kata galaksi berasal dari bahasa Yunani galaxias (γαλαξίας), yang berarti "seperti susu," yang merujuk pada galaksi Bima Sakti (bahasa Inggris: Milky Way [jalan susu]). Galaksi yang ada berkisar dari galaksi katai dengan hanya sepuluh juta (107) bintang[3] hingga galaksi raksasa dengan seratus triliun (1014) bintang,[4] yang semuanya mengorbit pada pusat massa galaksi masing-masing. Matahari adalah salah satu bintang dalam galaksi Bima Sakti; tata surya termasuk bumi dan semua benda yang mengorbit Matahari.

Tiap galaksi memiliki jumlah sistem bintang dan gugus bintang yang beragam, demikian juga jenis awan antarbintangnya. Di antara galaksi-galaksi ini tersebar medium antarbintang berupa gas, debu, dan sinar kosmis. Lubang hitam supermasif terdapat di pusat sebagian besar galaksi. Diperkirakan lubang hitam supermasif inilah penyebab utama inti galaksi aktif yang ditemukan pada sebagian galaksi. Galaksi Bima Sakti diketahui memiliki setidaknya satu lubang hitam supermasif.[5]

Secara historis galaksi dikelompokkan berdasarkan bentuk terlihatnya atau biasa disebut morfologi visualnya. Bentuk yang umum adalah galaksi eliptis,[6] yang memiliki profil cahaya berbentuk elips. Galaksi spiral adalah galaksi berbentuk cakram dengan lengan galaksi yang melengkunng dan berisi debu. Galaksi dengan bentuk yang tak beraturan atau tidak biasa disebut galaksi tak beraturan dan biasanya disebabkan karena gangguan oleh tarikan gravitasi galaksi tetangga. Interaksi yang demikian antara galaksi-galaksi yang berdekatan dapat menyebabkan penggabungan, yang terkadang meningkatkan jumlah pembentukan bintang hingga menghasilkan galaksi starburst.[7]

Kemungkinan terdapat lebih dari 170 miliar (1,7 × 1011) galaksi dalam alam semesta teramati.[8] Sebagian besar berdiameter 1000 hingga 100.000 parsec[9] dan biasanya dipisahkan oleh jarak beberapa juta parsec (atau megaparsec).[10] Ruang antargalaksi diisi oleh gas tipis dengan kerapatan massa kurang dari satu atom per meter kubik. Sebagian besar galaksi diorganisasikan ke dalam sebuah hierarki himpunan yang disebut kelompok dan gugus, yang pada gilirannya membentuk himpunan yang lebih besar yang disebut gugus raksasa. Dalam skala terbesar himpunan-himpunan ini umumnya tersusun dalam lapisan dan untaian yang dikelilingi oleh kehampaan yang sangat luas.[11]

Meskipun belum dipahami secara menyeluruh, materi gelap kemungkinan menyusun sekitar 90% dari massa sebagian besar galaksi.[butuh rujukan] Data pengamatan menunjukkan lubang hitam supermasif kemungkinan ada di pusat dari banyak (kalau tidak semua) galaksi.

Etimologi             

Kata galaksi berasal dari istilah bahasa Yunani untuk menyebut galaksi kita, galaxias (γαλαξίας) atau kyklos galaktikos (κύκλος γαλακτικός). Masing-masing berarti "sesuatu yang menyerupai susu" dan "lingkaran susu",[12] sesuai dengan penampakannya di angkasa berupa pita putih samar. Dalam mitologi Yunani, Zeus menempatkan anak laki-lakinya yang dilahirkan oleh manusia biasa, bayi Heracles, pada payudara Hera ketika Hera sedang tidur sehingga bayi tersebut meminum susunya dan karena itu menjadi manusia abadi. Hera terbangun ketika sedang menyusui dan kemudian menyadari ia sedang menyusui bayi yang tak dikenalnya: ia mendorong bayi tersebut dan air susunya menyembur mewarnai langit malam, menghasilkan pita cahaya tipis yang dikenal dalam bahasa Inggris sebagai Milky Way (jalan susu).[13][14]

Ketika William Herschel menyusun "katalog nebula" miliknya pada tahun 1786, dia menggunakan istilah "nebula spiral" untuk objek-objek tertentu seperti objek M31. Di kemudian waktu akan disadari bahwa objek tersebut sebenarnya merupakan kumpulan dari banyak bintang, dan dipakailah istilah "island universe" ("alam semesta pulau") untuk merujuk pada objek yang demikian. Namun, kemudian disadari bahwa kata "universe" (alam semesta) berarti keseluruhan jagad raya, sehingga istilah ini tidak dipakai lagi dan objek yang demikian kemudian dikenal sebagai galaksi.[15]

Sejarah pengamatan      

Pengetahuan bahwa kita hidup di dalam sebuah galaksi dan bahwa terdapat banyak galaksi lainnya, diperoleh seiring dengan penemuan-penemuan kita tentang Bima Sakti dan nebula-nebula lainnya di langit malam.

Bima Sakti         

Pusat galaksi Bima Sakti
Filsuf Yunani Democritus (450–370 SM) mengemukakan bahwa pita kabut putih di langit malam hari yang dikenal sebagai Bima Sakti kemungkinan terdiri dari bintang-bintang yang sangat jauh jaraknya.[16] Namun Aristoteles (384–322 SM), memercayai bahwa pita tersebut disebabkan oleh "kobaran hembusan napas yang menyala-nyala dari banyak bintang besar yang berjarak dekat satu sama lain" dan bahwa "kobaran ini terjadi di bagian atas atmosfer, yaitu di wilayah dunia yang selalu diisi dengan gerakan surgawi."[17] Filsuf neoplatonis Olympiodorus Junior (± 495–570) kritis terhadap pandangan ini secara ilmiah, beralasan bahwa jika memang benar Bima Sakti berada di wilayah sublunar (terletak antara bumi dan bulan), maka harusnya ia terlihat berbeda pada waktu dan tempat yang berbeda di bumi, dan ia seharusnya memiliki paralaks, yang ternyata tidak. Dalam pandangannya, Bima Sakti terletak jauh di angkasa. Pendapat ini akan sangat berpengaruh nantinya di dalam dunia Islam.[18]

Menurut Mohani Muhammad, astronom Arab Ibnu Haitham (965–1037) adalah orang yang melakukan usaha-usaha pertama dalam mengamati dan mengukur paralaks Bima Sakti,[19] dan ia menjadi "berkeyakinan kuat bahwa karena Bima Sakti tidak memiliki paralaks, pastilah jaraknya sangat jauh dari bumi dan bukannya berada dalam atmosfer."[20] Astronom Persia Al-Biruni (973–1048) mengemukakan bahwa Bima Sakti merupakan "kumpulan yang tak terhitung jumlahnya dari bagian-bagian yang bersifat seperti bintang nebula."[21][22] Astronom Andalusia Ibnu Bajjah (dikenal di barat dengan nama latin "Avempace", meninggal 1138) mengemukakan bahwa Bima Sakti dibentuk oleh banyak bintang yang saling hampir bersentuhan satu dengan yang lain sehingga tampak menjadi seperti gambar sinambung akibat pengaruh pembiasan dari material sublunar,[17][23] mengutip hasil pengamatannya terhadap konjungsi antara Jupiter dan Mars sebagai bukti bahwa hal tersebut dapat terjadi jika dua objek saling berdekatan.[17] Pada abad ke-14, ilmuwan kelahiran Suriah Ibnu Qayyim, mengemukakan bahwa Bima Sakti merupakan "bintang-bintang kecil yang tak terhitung jumlahnya saling berdesakan dalam alam bintang-bintang tetap".[24]

Bukti nyata bahwa Bima Sakti terdiri atas banyak bintang, datang pada tahun 1610 ketika astronom Italia Galileo Galilei menggunakan sebuah teleskop untuk mempelajari Bima Sakti dan menemukan bahwa Bima Sakti tersusun atas bintang-bintang redup dalam jumlah yang luar biasa banyaknya.[25] Pada tahun 1750 astronom Inggris Thomas Wright, dalam bukunya An original theory or new hypothesis of the Universe (Teori asli atau hipotesis baru tentang Alam Semesta), berspekulasi (namun benar) bahwa Bima Sakti kemungkinan adalah sebuah badan berputar dari bintang-bintang dalam jumlah besar yang diikat oleh gaya gravitasi, serupa dengan tata surya namun dalam skala yang jauh lebih besar. Piringan bintang yang dihasilkan dapat terlihat sebagai pita di langit dari sudut pandang kita dalam piringan tersebut.[26] Dalam risalah pada tahun 1755, Immanuel Kant mengembangkan ide Wright tentang struktur Bima Sakti.


Bentuk Bima Sakti yang disimpulkan dari hitungan bintang oleh William Herscel pada tahun 1785; tata surya dianggap berada di dekat pusat galaksi.
Usaha pertama untuk menggambarkan bentuk Bima Sakti dan letak matahari di dalamnya dilakukan oleh William Herschel pada tahun 1785 dengan cara menghitung secara hati-hati jumlah bintang yang ada di berbagai wilayah langit yang beda. Dia menghasilkan sebuah diagram bentuk Bima Sakti dengan tata surya terletak dekat dengan pusatnya.[27] Menggunakan pendekatan yang lebih baik, Jacobus Kapteyn pada tahun 1920 sampai pada kesimpulan berupa sebuah gambar galaksi elipsoid kecil (dengan garis tengah kira-kira 15 kiloparsec) dengan matahari terletak dekat dengan pusat galaksi. Metode yang berbeda oleh Harlow Shapley berdasarkan pengatalogan gugus bola menghasilkan gambar yang sangat jauh berbeda: sebuah piringan pipih dengan garis tengah kira-kira 70 kiloparsec dan matahari terletak jauh dari pusat galaksi.[26] Kedua analisis tersebut gagal memperhitungkan penyerapan cahaya oleh debu antarbintang yang ada di bidang galaksi, namun setelah Robert Julius Trumpler menghitung efek ini pada tahun 1930 dengan mempelajari gugus terbuka, gambaran terkini galaksi tuan rumah kita, Bima Sakti, terlahir.[28]

Pembedaan dari nebula lainnya             

Sketsa Messier 51 oleh Lord Rosse pada tahun 1845, yang kemudian dikenal sebagai Galaksi Pusaran
Pada abad ke-10, astronom Persia As-Sufi membuat pengamatan yang tercatat paling awal terhadap galaksi Andromeda, menggambarkannya sebagai "awan kecil".[29] As-Sufi yang menerbitkan temuannya dalam Kitab Bintang-Bintang Tetap pada tahun 964, juga mengenali Awan Magellan Besar yang dapat dilihat dari Yaman, walau bukan dari Isfahan; dan galaksi ini tidak akan dilihat oleh orang Eropa hingga perjalanan Magellan pada abad ke-16.[30][31] Galaksi Andromeda ditemukan kembali secara terpisah oleh Simon Marius pada tahun 1612.[29] Hanya kedua galaksi inilah galaksi di luar Bima Sakti yang mudah dilihat dengan mata telanjang, menjadikan keduanya sebagai galaksi-galaksi pertama yang diamati dari bumi. Pada tahun 1750 Thomas Wright dalam bukunya An original theory or new hypothesis of the Universe (Teori asli atau hipotesis baru tentang Alam Semesta), berspekulasi (namun benar) bahwa Bima Sakti adalah sebuah badan berputar dari bintang-bintang, dan bahwa beberapa nebula yang tampak di malam hari bisa jadi merupakan Bima Sakti yang lain.[26][32]

Menuju akhir abad ke-18, Charles Messier menghimpun sebuah katalog yang berisi 109 nebula (objek angkasa dengan tampilan berkabut) yang paling terang, yang kemudian diikuti dengan sebuah katalog yang lebih besar yang berisi 5.000 nebula disusun oleh William Herschel.[26] Pada tahun 1845, Lord Rosse membangun sebuah teleskop baru yang mampu membedakan nebula elips dan spiral. Dia juga berhasil membedakan titik-titik sumber cahaya tunggal di beberapa nebula ini.[33]

Pada tahun 1912 Vesto Slipher membuat penelitian dengan spektrografi terhadap nebula-nebula spiral paling terang untuk menentukan apakah mereka terbuat dari bahan-bahan kimia yang diharapkan ada dalam sebuah sistem planet. Namun Slipher menemukan bahwa nebula spiral memiliki geseran merah yang tinggi, menunjukkan bahwa mereka sedang bergerak menjauh dengan kecepatan yang lebih tinggi dari kecepatan lepas Bima Sakti. Karena itu disimpulkan bahwa galaksi-galaksi tersebut tidak terikat secara gravitasi pada Bima Sakti dan kecil kemungkinannya merupakan bagian dari Bima Sakti.[34][35]

Pada tahun 1917, Heber Curtis mengamati bahwa terdapat sebuah bintang baru, S Andromedae, dalam "Nebula Andromeda Besar" (sebagaimana Galaksi Andromeda, Objek Messier M31 dikenal saat itu). Dengan mencari rekaman foto, dia menemukan 11 bintang baru lainnya. Curtis memperhatikan bahwa bintang-bintang baru ini rata-rata 10 magnitudo lebih redup dibandingkan dengan bintang-bintang baru yang muncul di galaksi kita. Sebagai hasilnya dia dapat menghitung perkiraan jaraknya adalah 150,000 parsec. Dia menjadi pendukung hipotesis yang disebut "island universes" yang beranggapan bahwa nebula spiral sebenarnya adalah galaksi tersendiri.[36]


Foto "Nebula Andromeda Besar" dari tahun 1899, yang kemudian dikenal sebagai Galaksi Andromeda
Pada tahun 1920, apa yang disebut "Debat Besar" terjadi antara Harlow Shapley and Heber Curtis mengenai sifat Bima Sakti, nebula spiral dan dimensi alam semesta. Untuk mendukung klaimnya yang menyatakan Nebula Andromeda Besar merupakan sebuah galaksi luar, Curtis menunjukkan bukti berupa munculnya jalur-jalur gelap menyerupai awan debu yang terdapat pada Bima Sakti dan juga pergeseran Doppler yang cukup besar.[37]

Permasalahan tersebut terselesaikan dengan pasti pada tahun 1922 ketika astronom Estonia Ernst Öpik memberikan penentuan jarak yang mendukung teori bahwa Nebula Andromeda adalah benar merupakan sebuah objek luar galaksi yang jauh.[38] Dengan menggunakan teleskop 100 inci baru milik Observatorium Gunung Wilson, Edwin Hubble berhasil menentukan bahwa bagian luar sebagian nebula spiral merupakan kumpulan dari bintang-bintang tunggal dan mengidentifikasi beberapa Bintang variabel Chepeid, yang memungkinkannya memperkirakan jarak nebula-nebula tersebut: mereka terlalu sangat jauh untuk dapat menjadi bagian dari Bima Sakti.[39] Pada tahun 1936 Hubble menciptakan sebuah sistem klasifikasi untuk galaksi yang masih dipergunakan hingga saat ini yakni urutan Hubble.[40]

Penelitian modern       

Kurva rotasi galaksi spiral biasa: perkirakan berdasarkan materi terlihat (A) dan kecepatan teramati (B). Sumbu vertikal mewakili kecepatan rotasi dan sumbu horizontal mewakili jarak objek dari pusat galaksi.

Galaksi terjauh saat ini: GN-z11
Pada tahun 1944, Hendrik van de Hulst memperkirakan akan adanya radiasi gelombang mikro dengan panjang gelombang 21 cm yang berasal dari gas antarbintang yang berisi atom hidrogen;[41] radiasi ini diamati pada tahun 1951. Radiasi ini memungkinkan penelitian yang jauh lebih baik terhadap galaksi Bima Sakti, karena radiasi tersebut tidak terpengaruh penyerapan oleh debu antarbintang, dan pergeseran Doppler-nya dapat digunakan untuk memetakan pergerakan gas tersebut di dalam galaksi. Pengamatan ini mendorong terciptanya postulat tentang struktur batang yang berputar pada pusat galaksi.[42] Dengan teleskop radio yang ditingkatkan, gas hidrogen dapat juga dilacak pada galaksi-galaksi lain.

Pada tahun 1970, berdasarkan penelitian Vera Rubin terhadap kecepatan rotasi gas dalam galaksi, ditemukan bahwa total massa terlihat (bintang dan gas) tidak sesuai dengan kecepatan berputar gas tersebut. Masalah perputaran galaksi ini dikira dapat dijelaskan dengan adanya sejumlah besar materi gelap yang tak terlihat.[43][44]

Sejak tahun 1990-an, Teleskop Angkasa Hubble menghasilkan pengamatan yang lebih baik. Di antaranya, hasil pengamatan dengan Teleskop Hubble membuktikan bahwa materi gelap yang hilang dalam galaksi kita tidak mungkin pada dasarnya hanya terdiri dari bintang-bintang redup atau kecil.[45] Hubble Deep Field, sebuah foto dengan eksposur yang sangat panjang wilayah langit yang relatif kosong, memberikan bukti bahwa terdapat kira-kira 125 miliar (1.25×1011) galaksi di alam semesta.[46] Peningkatan dalam teknologi pendeteksian spektrum-spektrum tak kasat mata (teleskop radio, kamera inframerah, dan teleskop sinar x) memungkinkan pendeteksian galaksi-galaksi lain yang tidak terdeteksi sebelumnya oleh teleskop Hubble. Secara khusus, survei galaksi dalam zona langka galaksi (wilayah langit yang terhalang oleh Bima Sakti) berhasil menunjukkan sejumlah galaksi baru.[47]

Jenis dan bentuk              

Jenis-jenis galaksi berdasarkan sistem klasifikasi Hubble. E merupakan tipe galaksi eliptis, S merupakan galaksi spiral, dan SB merupakan galaksi spiral berbatang.[note 1]
Galaksi dapat dikelompokkan dalam tiga jenis utama: eliptis, spiral dan tak beraturan. Gambaran yang lebih lengkap mengenai jenis galaksi berdasarkan bentuknya bisa didapatkan dalam sistem klasifikasi Hubble. Karena sistem klasifikasi Hubble hanya berdasarkan pada pengamatan visual, klasifikasi ini mungkin melewatkan beberapa karakteristik penting dari galaksi, seperti laju pembentukan bintang (di galaksi starburst) dan aktivitas inti galaksi (di galaksi aktif).[7]

Eliptis   

Sistem klasifikasi Hubble membedakan galaksi eliptis berdasarkan tingkat keelipsannya, dari E0 yang hampir berupa lingkaran, hingga E7 yang sangat lonjong. Galaksi dalam kategori ini memiliki bentuk dasar elipsoid, sehingga tampak elips dari berbagai sudut pandang. Galaksi tipe ini tampak memiliki sedikit struktur dan sedikit materi antarbintang, sehingga galaksi demikian memiliki sedikit gugus terbuka dan laju pembentukan bintang yang lambat. Galaksi tipe ini didominasi oleh bintang tua yang beredar mengelilingi pusat gravitasi dengan arah yang acak. Bintang-bintang dalam galaksi ini memiliki sedikit unsur-unsur berat karena pembentukan bintang sudah berhenti setelah lonjakan awalnya. Dalam hal tersebut, galaksi tipe ini mirip dengan gugus bola.[48]

Galaksi-galaksi terbesar di alam semesta berbentuk galaksi eliptis raksasa. Kebanyakan galaksi eliptis dipercayai terbentuk akibat interaksi antar galaksi yang menyebabkan tabrakan atau penggabungan.[49] Galaksi starburst merupakan akibat dari tabrakan yang demikian dan dapat menyebabkan pembentukan galaksi eliptis.

Spiral   

Galaksi Pusaran (kiri), sebuah galaksi spiral tanpa batang.
Galaksi spiral terdiri dari sebuah piringan bintang-bintang yang berotasi, materi antarbintang, serta sebuah tonjolan pusat yang terdiri dari bintang-bintang tua. Selain itu, terdapat lengan-lengan spiral terang yang menjulur dari tonjolan pusat. Dalam sistem klasifikasi Hubble, galaksi spiral digolongkan sebagai tipe S, diikuti sebuah huruf (a, b, atau c) yang menunjukkan tingkat kerapatan dari lengan spiral dan ukuran dari tonjolan pusat. Galaksi Sa memiliki lengan spiral yang samar dan bergulung rapat, serta tonjolan pusat yang relatif besar. Sedangkan galaksi Sc memiliki lengan spiral yang jelas dan melebar serta tonjolan pusat yang relatif kecil.[50] Galaksi spiral dengan lengan yang tidak jelas terkadang disebut galaksi spiral flocculent. Sedang galaksi dengan lengan yang jelas dan menonjol disebut galaksi spiral grand design.

Dalam galaksi spiral, lengannya membentuk pola seperti spiral logaritmis, pola yang secara teoretis terbentuk karena adanya gangguan terhadap massa bintang yang berputar seragam. Dalam teori gelombang kepadatan lengan spiral ini diperkirakan berisi materi berkepadatan tinggi.[51] Saat bintang melewati salah satu lengan galaksi kecepatannya dipengaruhi oleh gaya gravitasi daerah yang kepadatan materinya lebih tinggi, dan kembali normal saat bintang sudah melewatinya. Efek ini mirip dengan "gelombang" pelambatan mobil di jalan raya yang penuh mobil. Lengan galaksi terlihat jelas karena kepadatan materi yang tinggi memungkinkan pembentukan bintang sehingga terdapat banyak bintang muda dan terang di sana.[52]


NGC 1300, contoh galaksi spiral berbatang.
Sebagian besar galaksi spiral memiliki kumpulan bintang berbentuk batang lurus yang memanjang keluar dari sisi daerah inti dan kemudian bergabung dengan struktur lengan spiral.[53] Dalam sistem klasifikasi Hubble, galaksi ini dikategorikan sebagai SB, dan diikuti huruf (a, b atau c) yang mengindikasikan bentuk lengan spiralnya (serupa dengan penggolongan galaksi spiral biasa). Batang galaksi diperkirakan merupakan struktur sementara yang disebabkan oleh gelombang materi berkepadatan tinggi dari inti galaksi, atau karena interaksi pasang surut dengan galaksi lain.[54] Banyak galaksi spiral berbatang yang berinti aktif, kemungkinan karena adanya gas yang menuju ke inti melalui lengan spiral.[55]

Galaksi Bima Sakti merupakan galaksi spiral berbatang ukuran besar[56] dengan diameter sekitar 30 kiloparsec dan ketebalan sekitar satu kiloparsec. Bima Sakti memiliki sekitar 200 miliar (2×1011)[57] bintang dengan massa total sekitar 600 miliar (6×1011) kali massa Matahari.[58]

Bentuk lain         

Objek Hoag, merupakan galaksi cincin.
Galaksi ganjil (peculiar galaxy) merupakan galaksi yang memiliki sifat-sifat yang tidak biasa karena interaksi pasang surut dengan galaksi lain. Contohnya adalah galaksi cincin, yang memiliki struktur mirip cincin berisi bintang dan materi antarbintang yang mengelilingi inti kosong. Galaksi cincin diperkirakan terbentuk saat galaksi kecil melewati inti galaksi yang lebih besar.[59] Kejadian tersebut mungkin pernah dialami galaksi Andromeda yang memiliki beberapa struktur mirip cincin jika diamati pada spektrum inframerah.[60]


NGC 5866, merupakan galaksi lentikular. NASA/ESA
Galaksi lentikular merupakan bentuk pertengahan yang memiliki sifat baik dari galaksi eliptis maupun galaksi spiral, dan dikategorikan sebagai tipe S0 dan memiliki lengan spiral yang samar-samar serta halo berisi bintang yang berbentuk eliptis.[61] (Galaksi lentikular berbatang masuk dalam klasifikasi Hubble SB0).

Selain yang disebutkan dalam klasifikasi di atas, terdapat beberapa galaksi yang tidak dapat langsung digolongkan ke dalam bentuk eliptis atau spiral. Kelompok ini digolongkan sebagai galaksi iregular. Galaksi iregular tipe Irr-I memiliki semacam struktur, namun tidak jelas masuk dalam salah satu klasifikasi Hubble. Galaksi iregular tipe Irr-II tidak memiliki struktur apapun yang mirip klasifikasi Hubble, dan kemungkinan pernah terganggu oleh galaksi lain.[62] Contoh terdekat galaksi (katai) iregular adalah Awan Magellan.

Katai     

Meski galaksi eliptis dan spiral terlihat sangat menonjol, namun sepertinya sebagian besar galaksi di alam semesta merupakan galaksi katai. Galaksi katai tampak relatif kecil jika dibandingkan dengan galaksi lain, kira-kira hanya seperseratus dari ukuran Bima Sakti dan hanya berisi beberapa miliar bintang. Bahkan beberapa galaksi katai ultra-kompak baru-baru ini ditemukan yang hanya berukuran 100 parsec panjangnya.[63]

Beberapa galaksi katai dapat mengitari sebuah galaksi tunggal yang lebih besar; Bima Sakti sendiri memiliki sedikitnya selusin satelit yang demikian, dengan perkiran 300–500 lagi belum ditemukan.[64] Galaksi katai dapat juga diklasifikasikan lagi menjadi eliptis, spiral, atau tak beraturan. Karena galaksi katai eliptis kecil hanya memiliki sedikit kemiripan dengan galaksi eliptis besar, maka mereka lebih sering disebut galaksi sferoid katai.

Sebuah penelitian terhadap 27 galaksi tetangga Bima Sakti, menemukan bahwa setiap galaksi katai memiliki massa pusat kurang lebih 10 juta massa matahari terlepas dari apakah galaksi tersebut memiliki seribu atau sejuta bintang. Hal ini mendorong pada kesimpulan bahwa galaksi sebagian besarnya terdiri dari materi gelap, dan bahwa ukuran minimumnya mungkin menunjukkan keberadaan semacam materi gelap hangat, yang tak mampu melakukan peleburan gravitasi dalam skala kecil.[65]


Mekanisme Pendengaran Manusia

Mekanisme Pendengaran Manusia A. Telinga manusia Telinga merupakan salah satu organ tubuh yang dimiliki oleh manusia yang berfungsi s...